American Journal of Health Research 2021; 9(1): 26-33 http://www.sciencepublishinggroup.com/j/ajhr doi: 10.11648/j.ajhr.20210901.14 ISSN: 2330-8788 (Print); ISSN: 2330-8796 (Online)

An Individualised Learning and Exercise Program Based on the Bobath Concept to Facilitate Goal Achievement in People with Chronic Stroke

Eckhardt Gabriele¹, Brock Kim², Haase Gerlinde¹, Ishida Toshie³, Hummelsheim Horst⁴

¹Center of Physiotherapy and Rehabilitation, Haan, Germany
 ²St Vincent's Hospital, Melbourne, Australia
 ³Juntendo University Nerima Hospital, Tokyo, Japan
 ⁴Neurological Rehabilitation Center-Leipzig, Leipzig-Bennewitz, Germany

Email address:

g.eckhardt@burgerland.de (E. Gabriele) *Corresponding author

To cite this article:

Eckhardt Gabriele, Brock Kim, Haase Gerlinde, Ishida Toshie, Hummelsheim Horst. An Individualised Learning and Exercise Program Based on the Bobath Concept to Facilitate Goal Achievement in People with Chronic Stroke. *American Journal of Health Research*. Vol. 9, No. 1, 2021, pp. 26-33. doi: 10.11648/j.ajhr.20210901.14

Received: February 15, 2021; Accepted: February 24, 2021; Published: March 9, 2021

Abstract: Background: To facilitate improvement in participation, therapy needs to be transferred into everyday life of people with chronic stroke. Individualised, home based, self-training exercise programs should be oriented towards the potential of the person, be specific to their ability and impairment levels, avoid compensation strategies as far as possible and operate at the upper limit of the individual's ability level. Objectives: To investigate the effectiveness of an individualised learning and exercise program based on the Bobath concept for facilitating personal goal achievement in people with chronic stroke. Method: Repeated measures design. Fifty-five people with chronic stroke were recruited from participants in Advanced Bobath training courses. During the five day course, participants learned individualised self-training programs, which they then carried out at home for three months, adapting their program according to their performance level. The primary outcome measure was the Canadian Occupational Performance Measure (COPM) - Performance domain. Secondary measures included the COPM satisfaction domain, World Health Organisation Disability Assessment Score-2 (WHO-DAS2), and Goal Attainment Score (GAS). Measurements were taken three months and immediately prior to the Bobath course and three months after the course. Results: COPM-Perfomance, COPM-Satisfaction and the WHODAS-2 showed a significant difference over the time points, with followup scores significantly greater than both baseline and preintervention (p<.001). Sixty eight percent of participants achieved their personal goals (GAS). Conclusion: The study indicates that an individualised self-training approach based on Bobath principles may enable the transfer of acquired proficiency into the personal goals of people with chronic stroke.

Keywords: Bobath, Individual Self Training, Exercise Program, Stroke

1. Introduction

There is growing interest in rehabilitation interventions extending beyond the subacute phase for stroke survivors [1, 2] underpinned by studies showing poor outcomes for quality of life and participation [3, 4]. There is evidence that stroke survivors can benefit from physiotherapy in the chronic phase, however, the costs of providing this care are considerable [5].

The use of individually tailored self training in a home based exercise program has yielded positive results for increasing physical activity [6], walking capacity [7, 8] and upper limb function [9]. There is less evidence for improving participation, including achievement of personal goals. Goal directed, individualised self training programs may be a useful approach for enhancing achievement of personal goals in stroke survivors.

The Bobath concept is a well established approach to

neurorehabilitation. The clinical reasoning of the Bobath therapist involves a complex assessment focusing on the analysis of movement behaviour in task performance [10]. The therapist assesses the quality and efficiency of movement, the individual impact of the neurological condition on the person and identifies potential for more efficient movement to enable achievement of meaningful goals [10]. In Bobath practice, interventions are necessarily individualised; this applies equally to the therapist/ patient interaction and development of self training programs. In this context, the question arises as to whether an individualized self training program, developed in accordance with Bobath principles, will bring about improvements in participation in stroke survivors.

The primary hypothesis for this pilot study is that participants with chronic stroke who receive a combined intervention of individualised Bobath training and a goal directed, self training program will improve more in their ability to perform their own personal goals, as measured by the Canadian Occupational Performance Measure (COPM) Performance scale [11], compared to a baseline period.

Secondary hypotheses are that greater improvements will also be observed compared to a baseline period for the following domains

- a) Satisfaction with ability to perform personal goals [11] (COPM Satisfaction scale)
- b) Self reported disability (WHO Disability Assessment Scale, version 2 [12] (WHO-DAS 2) and
- c) Physical function, as measured by the Rivermead Mobility Index [13] (RMI)

2. Method

Design: Repeated measures study. This project received ethical approval from Human Research Ethics Committees in Germany (Ethics Committee at Physio-Akademie of the German Physiotherapy Association (ZVK e.V.)) and Japan (Ethical Review Board of Juntendo University Nerima Hospital), conforming to the Declaration of Helsinki.

Written informed consent was gained from all participants.

Setting: Three ambulatory rehabilitation services in Germany and one outpatient service in an acute neurological hospital in Japan.

Participants: People with chronic stroke who had agreed to participate in a five day Advanced Bobath training course for physiotherapists and occupational therapists were invited to participate in the study. In Advanced Bobath training courses certified by the International Bobath Instructor Training Association (IBITA), people with neurological diagnoses attend for daily 90 minute assessment and treatment sessions conducted by course participants (qualified physiotherapists and occupational therapists), under the supervision of course tutors (certified by IBITA). The course venue is responsible for inviting current and previous patients to participate in the Bobath course. The selection criteria for patients attending a Bobath course with the self training theme included chronic stroke, significant sensori-motor dysfunction, limitations at an activity and participation level and able and willing to participate in therapy for daily 90 minutes treatment sessions.

- The inclusion criteria for this study were
- 1. Moderate disability following stroke
- 2. A minimum of 12 months post stroke
- 3. Cortical stroke
- 4. Friends or relatives living in the same household
- Exclusion criteria were
- 1. Pronounced receptive and/or expressive speech deficits
- 2. Pronounced neglect (Catherine Bergego Scale14 > 20),
- 3. Unable to follow a two-step command,
- 4. Full dependency in all ADLs

Intervention

The intervention consisted of two parts. The first part involved the development of a personalised self training program together with the therapist during the five day Bobath course. In the second part, the participants carried out their self training program with or without the help of carers at home over a three month period (see Figure 1).

In the first part, participants attended the Advanced Bobath Course, receiving 90 minutes of Bobath therapy on five consecutive days. The focus of these therapy sessions was the development and learning of a self training program. The self training program was designed to meet the following criteria:

- a) developed in response to the person's own goals:
- b) adapted to the individual's ability and neurological impairment
- c) developing the potential of the person for further improvement
- d) minimising the practice of compensatory strategies [15]
- e) using their usual personal environments and equipment already available to them

On commencement in the Advanced Bobath Course, each participant was assessed with regard to their personal situation, movement dysfunction and impairments. Together with the participant, personal goals were identified with potential for achievement through the methodical and systematic application of an individualised exercise program. Personal goals were structured into the SMART goal format [16]. The therapist then divided the desired goal into activities, movement sequences, and movement components. Movement analysis provided information about the sequences and components of movement that the person could not complete or where movements were not efficient or economical. For the desired action, the patterns of activation of both target muscles and compensatory muscles were evaluated. The assessment also focused on the impairments underlying the movement problems; the relative proportions and severity of motor, sensory, biomechanical, perceptual and/or cognitive and emotional disorders [17]. The therapist formulated working hypotheses as to the underlying causes of the movement problem [10], these were then tested in the treatment sessions during the five day course and adapted and changed as necessary. Once the therapists had confirmed a treatment approach that yielded improved performance within session, exercises were developed for the person to practice at home.

The exercises focused on specific movements, aimed at improving control of movement and avoiding the use of compensatory strategies. The exercises also included components related to specific impairments, for example, inclusion of exercises involving turning to improve orientation in space in patients with perceptual issues, or exercises to mobilise the hip in patients with motor and biomechanical impairments. Programs usually included both part task and whole task exercises and exercises outside the task where specific components were addressed in different postures or alignments. Other postures were utilised in order to make it easier to achieve the movement component; for example, working on core stability aspects in supine or sidelying.

For the exercise program, a folder with photos was used; each folder was created in the Advanced Course together with the patient participants, inclusive of written instructions and comments (see Online Supplement for examples of exercise programs). Information was provided on how to perform the exercise and recommendations for the number of repetitions. In addition, three variations of each exercise (a, b and c) were developed so the patient could adapt the exercise to increase or decrease the difficulty level, allowing shaping of the exercise to their ability level on a specific day. In order to move on to a more difficult version of the exercise, the patient had to reach specified levels of ability. For some patients, a relative or friend provided cueing, supervision or light assistance to enable practice of difficult components.

In the second part, the participant was asked to carry out their individualised program for three months, including adapting their exercises according to their own assessment of their performance. A calendar was used over the duration of the second part to document the level of difficulty performed for each exercise (a, b or c), enabling the participant to visualize their achieved level of performance.

In five Advanced Courses, 59 therapists (36 PT, 23 OT) were trained to create the individualized self training programs. Four IBITA recognized advanced course instructors were involved in providing the training.

2.1. Measures

The primary dependent variable was the Canadian Occupational Measurement (COPM) Performance domain [11]. The COPM is a person centered measure where a structured interview is conducted to identify daily activities that the person wants to do, needs to do or is expected to do but is unable to accomplish. The COPM Performance domain measures the person's self perceived level of ability to perform the identified task. In the Satisfaction domain, the person rates their satisfaction with their performance level. For this study, COPM Performance was chosen as the primary outcome as it measures the person's ability to perform their own goals, ensuring that outcomes achieved are significant and relevant to the person. Reliability and validity of COPM has been demonstrated [18]. The COPM has been widely utilized to measure the effectiveness of interventions following stroke [19–24].

Secondary variables include the World Health Organization Disability Assessment Score 2.0 [12] (WHO DAS-2), and the Rivermead Mobility Index (RMI). The WHO DAS-2 has undergone extensive psychometric testing [25]. Reliability [13] and aspects of validity and responsiveness [26, 27] have been established for the RMI.

Measurements were taken at baseline (three months before commencing the Advanced course), immediately prior to the Advanced course and three months after completing the course (see Figure 1). An independent rater, physiotherapist, occupational therapist or neuropsychologist from each center conducted the assessments; raters were not involved in the study design, selection of participants, or delivery of the intervention. The raters were trained in the assessment procedures. The baseline and pre-course assessments were completed in person and the follow up assessments were completed in person or by telephone.

In addition to these measures, Goal Attainment Scaling [28] (GAS) was utilized during the Advanced Courses to help participants and therapists clarify goals and the level of achievement the stroke survivors were aiming for. GAS ratings achieved were scored during the follow up assessment by the independent raters.

2.2. Statistical Analysis

As an initial step, the variables of interest were investigated for normality of distribution by visual inspection and analysis of skewness and kurtosis. Analysis of variance for repeated measures (ANOVA) was utilized to test for significant differences between measurement times. Where significant differences were identified, post hoc analysis with the least significant difference test was used to identify the time points with significant differences. Post hoc power analysis was utilized to determine the sample size required for a definitive trial.

3. Results

Fifty five people with stroke participated in the study. Demographic and medical variables of participants are presented in Table 1. Fifty four of the 55 participants participated in assessments at the three time points (Figure 1). Each participant with stroke had a self training program folder, containing an average of 8.98 individually devised exercises (SD 2.56, range 4 - 17) in relation to their personal goals. In all, 503 individual exercises were developed and utilized. On average, participants carried out all or part of their program on 73.04 of the 92 days (SD 19.85 Range 2-92). Table 2 shows baseline, preintervention and followup data for all outcome variables.

Gender	Men 25
Age	Mean 56.87 (SD 13.29; range 26 -82)
Side of hemiparesis	Right 24, Left 31
Type of stroke	Infarct Haemorrhage
Time since injury	7.12 years (SD 6.67; range 1 – 27 years)
Berg Balance Score Maximum score 56	Mean 45.1 (SD 11.7; range 9 -56)
MESUPES* Arm Maximum score 40	Mean 19 (SD10.3; range 0 -39)
MESUPES Hand Maximum score 12	Mean 3.3 (SD4.5; range 0-12)
MESUPES Orientation Maximum score 6	Orientation 0.8 (SD1.6; range 0-6)

Table 1. Demographic and medical variables at baseline.

MESUPES: Motor Evaluation Scale for Upper Extremity in Stroke.

Figure 1. Flow chart participants.

	Baseline Mean (SD)	Pre-Intervention Mean (SD)	Follow up Mean (SD)
COPM - Performance	3.3 (1.52)	3.5 (1.54)	4.61 (1.6)
COPM - Satisfaction	2.56 (1.47)	2.79 (1.68)	4.3 (1.86)
WHO DAS-2	27.75 (16.7)	27.45 (15.98)	23.08 (15.14)
Rivermead Mobility Index	11.67 (2.89)	11.91 (2.55)	12.37 (2.62)

Table 2. Primary and secondary variable scores at three measurement points.

Prior to conducting the comparative analysis, visual inspection of boxplots at the three measurement time points demonstrated normal distribution patterns for all variables (Figure 2). For the primary variable of COPM Performance Score, repeated measures ANOVA showed that the mean values for the three measurement points were significantly different F (2.11)=29.69, p<0.001. Post-hoc analyzes using the least significant difference test demonstrated that the COPM Performance score at the follow-up measurement point was significantly higher than at the baseline and pre-intervention measurement points, p<0.001, (Figure 2a). No significant difference was found between baseline and pre-intervention (p=.16).

3.1. Secondary Variables

For COPM satisfaction, the ANOVA showed that the mean

values for the three measurement points were significantly different F (2,106)=45.018, p<0.001 (Figure 2b). Post-hoc analyzes demonstrated that the COPM satisfaction score at the follow-up measuring point was significantly higher than at the baseline and pre-intervention measuring points, p<0.001. No significant difference was found between baseline and pre-intervention (p=.14).

For the WHO DAS-2, the ANOVA showed that the mean values for the three measurement points were significantly different F (2,106)=12.44, p<0.001 (Figure 2c). Post-hoc analyzes demonstrated that the WHO DAS-2 score at the follow-up measurement point was significantly lower than the baseline and pre-intervention measurement points, p=0.001. No significant difference was found between baseline and pre-intervention (p=.5).

Figure 2. Boxplots for primary and secondary measurements at three time points; 3 months prior, one week prior and three months post the 5 day Bobath course a) Candian Occupational Performance Measure -Performance, b) Candian Occupational Performance Measure -Satisfaction, c) Rivermead Motor Index, d) WHO Disability Assessment Scale-2.

For the Rivermead Mobility Index, the ANOVA showed that the mean values for the three measurement points were significantly different F (1.36.73)=8000, p<0.003 (Figure 2d). Post-hoc analyzes demonstrated that each comparison between time points was significant (baseline to pre-intervention p=.027; baseline to follow up p=.002; and pre-intervention to follow up p=.019).

Fifty three participants rated their goal achievement level at the follow up assessment according to the Goal Attainment Score (Table 3). Sixty eight percent of all participants (N=36) achieved their goal (0) or were better than expected (+1, +2).

Table 3. Goal Attainment Score (N=53).

-2	-1	0	+1	+2
9	8	19	10	7

3.2. Sample Size Calculation

Sample size calculations for a definitive trial utilized differences in change scores over time for the COPM Performance domain. With alpha set at 0.05, power at 0.8 and a two-tailed test, 33 participants per group are required for a definitive trial.

4. Discussion

The results of the study indicate that people with chronic stroke may improve their ability to perform activities of personal importance, as measured by the COPM performance, following an individualized self training program based on the Bobath concept, conducted over a three month period. The self training programs were developed during an intensive five day therapy program and were individually tailored, based on participants' personal goals, individual needs, abilities and neurological impairments. The intensive therapy period focused on the participant becoming more aware of their own performance and therefore able to monitor the success or otherwise of their practice during the self training period. Two thirds of the participants achieved their own personal GAS goals.

The secondary measures of COPM satisfaction and WHO DAS-2 also showed improvement following the intervention. The lower scores observed in the WHO DAS-2 indicate that self perceived disability had reduced. For the Rivermead Mobility Index, improvement was demonstrated between each of the assessments. This was an unexpected finding of the study, however, the differences were small (average change less than one point on a 15 point scale).

Previous studies investigating self training have focused on measures of function such as walking capacity [8] or upper limb function [9]. This study indicates that an individualised self training program may also assist with performance in relevant activities when personal goals are targeted, potentially reducing participation restriction.

The research project set a time limit of 92 days for the self training program. Patients were encouraged to carry out their program as often as possible. The optimal dosage of training days or training times in self training in neurorehabilitation is not known [29]. Some guidelines suggest 150-minutes of exercise a week [30, 31]. In the present research, the participants practiced on average 73 days, showing a high motivation to use their exercise program. However, the amount of time spent on each exercise occasion was not recorded. In further research, this question should be considered. It is possible that a goal directed, individualized self training program makes the relevance of the exercises more understandable, increases the willingness to practice, and thus encourages the number of repetitions required for the learning process.

5. Limitations of the Study

The study has a number of limitations in the study design. Participants acted as their own controls in this repeated measure design; use of randomization would assist in determining the efficacy of this approach. Also, the participants were recruited from patients selected to participate in a training course for experienced therapists. It is not known how representative this group is of people with chronic stroke. The distribution of Berg Balance Scores indicate that the group did demonstrate a spread of ability associated with moderate stroke. Future studies should consider strategies to ensure a representative sample.

All participants were able to take part in the structured interview for the COPM, identify goals in everyday life of importance to them and rate both performance ability and satisfaction. In comparison, the use of GAS was more problematic in the study, with extensive training required to equip therapists with the ability to set person centered, relevant goals on the five point scale, adhering to SMART guidelines [17]. Establishing the five levels of goal achievement also required therapists to make judgements about potential to improve, which may be more or less accurate, to support the person with stroke to identify different levels of achievement. The COPM may have advantages over GAS in that less is required from both therapist and participant in determining potential to improve; and the person themselves determines the achievement level.

It should be noted that the average change scores between the pre-intervention and follow up measures was lower than the minimum detectable change for COPM Performance of 1.7 points18. Self training exercises are a component of behavioural self management [2]. The concurrent use of other interventions recommended for behavioural self management, such as identification of barriers and problem solving, with ongoing support, may yield greater change in COPM scores.

In this study, 503 exercises related to personal goals and individual ability and impairment were developed and documented. These exercises form a rich resource for content analysis, to unpack the therapy component provided, in order to elaborate the principles utilized to construct and individualize interventions. The authors are currently conducting these qualitative analyses to inform clinicians interested in exploring this approach and to assist replication of the study.

6. Conclusion

The results of this study indicate that an individualised self training approach based on the principles of the Bobath concept may enable the transfer of acquired proficiency into the personal goals of people with chronic stroke. The results of this pilot study can be utilized to inform further clinical trials investigating the effectiveness of this approach. Consideration should be given to complementary interventions to further enhance outcomes.

Conflict of Interest Statement

The authors declare that they have no competing interests.

Acknowledgements

The authors would like to thank all the course participants and patients who volunteered to participate in this study. Thank you Valeska Benz, Angelika Eigen, Friederike Goslar, Heidi Lessig, Oki Mayuka, Linzi Smith-Meadows, and Hiromi Sato for your support. Thanks to the members of the Science Advisory Board of the "Vereinigung der Bobath Therapeuten Deutschland" for your encouragement and specially Karoline Munsch for your professional proofreading and suggestions.

Partial funding for this study was provided by an IBITA Research Grant.

References

- Graven, C., Brock, K., Hill, K., & Joubert, L. (2011). Are rehabilitation and/or care co-cordinatiin intervention delivered in the community effective in reducing depression, facilitation participation and improving quality of life after stroke? Disabil Rehabil, S. 33 (17-18): 1501-20.
- [2] Dobkin, B.-H. (2016). Behavioral self-management strategies for practice and exercise should be included in neurologic rehabilitation trials and care. Curr Opin Neurol, S. 29: 693– 699.
- [3] Mayo, N., Wood-Dauphinee, S., Côté, R., Durcan, L., & Carlton, J. (Aug 2002). Activity, participation, and quality of life 6 months poststroke. Arch Phys Med Rehabil, S. 83 (8): 1035-42
- [4] van Mierlo ML & van Hoogstraten.-M. (2016). Quaility of Life during the first two years post stroke: The restore 4 Stroke Cohort Study. Cerebrovasc Dis., S. 41 (1-2): 19-26. doi: 10.1159/000441197.
- [5] Ferrarello F, Baccini M, Rinaldi LA, et al. Efficacy of physiotherapy interventions late after stroke: A meta-analysis. J Neurol Neurosurg Psychiatry. 2011; 82 (2): 136-143. doi: 10.1136/jnnp.2009.196428.
- [6] Morris, J., MacGillivray. S, & Mcfarlane. S. (2014).

Interventions to promote long term participation in physical activity after stroke: a systematic review of the literature. Archieves of Physical Medicine and Rehabilitation, S. 95: 956-67.

- [7] Brazzelli, M., Saunders, D., Greig, C., & Mead, G. (Nov 2011). Physical fitness training for stroke patients. Cochrane Database Syst Rev., S. 9; (11): CD003316. doi: 10.1002/14651858.CD003316.pub4.
- [8] Treger I, Landesman C, Tabacaru E, Kalichman L. Influence of home-based exercises on walking ability and function of post-stroke individuals. Int J Ther Rehabil. 2014; 21 (9): 441-446. doi: 10.12968/ijtr.2014.21.9.441.
- [9] Rand, D., Weingarden, H., Weiss, R., et al (2017). Self-training to improve UE function at the chronic stage post-stroke: a pilot randomized controlled trial. Disabil Rehabil., 39 (15): 1541-1548. doi: 10.1080/09638288.2016.1239766. Epub 2016 Oct 28.
- [10] Michielsen, M., Vaughan-Graham, J., Holland, A., Magri, A., & Suzuki, M. (2017). The Bobath concept – a model to illustrate clinical practice. Disabil and Rehab, https://doi.org.10.1080/09638288.2017.1417496.
- [11] Law, M. B. (2005). Canadian Occupational Performance Measure (4th ed.).. Ottawa, ON: CAOT Publications ACE.
- [12] Üstün, T., Chatterji, S., Kostanjsek, N., Rehm, J., & al., (2010). Developing the World Health Organisation Developing Schedule 2.0. Bull World Health Organ (88: 815-823).
- [13] Collen, F., Wade, D., Robb, G., & & Bradshaw, C. (1991). The Rivermead Mobility Index: A further development of the Rivermead Motor Assessment. Intern Disabil, Vol 13, 50-54.
- [14] Azouvi, P. (2017). The ecological assessment of unilateral neglect. Annals of Physical and Rehabilitation Medicine, 60 (3), 186–190. https://doi.org/10.1016/j.rehab.2015.12.005.
- [15] Vaughan-Graham, J., & Cott, C. (2016). Defining a Bobath clinical framework-a modified e-Delphi study. Physiother Theory Pract, S. 32 (8): 612-627.
- [16] Bovend' Eerdt, TJ; Botell, R E, Wade, DT (2009). Writing SMART rehabilitation goals and achieving goal attainment scaling: a practical guide. Clinical Rehabilitation (23: 352-61).
- [17] Eckhardt G, Brock K, Haase G, Puschnerus C, Hengelmolen-greb A, Böhm C. Bobath Concept Structural Framework (BCSF): Positioning Partial Aspects Within a Holistic Therapeutic Concept. 2018; 6 (4): 79-85. doi: 10.11648/j.ajhr.20180604.11.
- [18] Cup, EH; Scholte op Reimer, WJ.; Thijssen, M., & van Kuyk-Minis, M. (2003). Reliability and validity of the Canadian Occupational Performance Measure in stroke patients. Clin Rehabil., 17 (4): 402-9.
- [19] Lund, A. M. (2012). Development of a person-centred lifestyle intervention for older adults following a stroke or transient ischaemic attack.. Scandinavian Journal of Occupational Therapy, 19 (2), 140-149.
- [20] McCall, M. M. (2011). Modified constraint-induced movement therapy for elderly clients with subacute stroke. The American Journal of Occupational Therapy, 65 (4), 409-418.

- [21] Mew, M. (2010). Normal movement and functional approaches to rehabilitate lower limb dressing following stroke: A pilot randomised controlled trial.. British Journal of Occupational Therapy, 73 (2), 64-70.
- [22] Nilsen, D. M. (2012). Effect of imagery perspective on occupational performance after stroke: A randomized controlled trial.. The American Journal of Occupational Therapy, 66 (3), 320-329. doi: 10.5014/ajot.2012.003.
- [23] Roberts, P. S. (2005). Client-centered occupational therapy using constraint-induced therapy. Journal of Stroke and Cerebrovascular Diseases, 14 (3), 115–121.
- [24] Shaw, L. R. (2010). BoTULS: A multicentre randomised controlled trial to evaluate the clinical effectiveness and cost-effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A. Health Technology Assessment, 14 (26), 1.
- [25] WHO DAS manual. (May 2018). http://apps.who.int/iris/bitstream/handle/10665/43974/978924 1547598_eng.pdf;jsessionid=CCE385357E0FCB553C927B70 E5D7B3CC?sequence=1. abgerufen May 2018.
- [26] Hsieh CL, Hsueh IP, Mao HF. (2000). Validity and

responsiveness of the rivermead mobility index in stroke patients. Scand J Rehabil Med. (32 (3): 140-2).

- [27] Hsueh, I., Wang, C., Sheu, C., & Hsieh, C. (2003). Comparison of psychometric properties of three mobility measures for patients with stroke. Stroke (34 (7): 1741-5).
- [28] Krasny-Pacini, A., Hiebel, J., Pauly, F., Godon, S., & Chevignard, M. (2013). Goal Attainment Scaling in rehabilitation: A literature-based update. Annals of Physical and Rehabilitation Medicine, 56 (3), 212–230. https://doi.org/10.1016/j.rehab.2013.02.002.
- [29] Vloothuis.JDM, van Wegen, E., Veerbek, J., Konijnenbelt, M. V.-M., & Kwakkel, G. (2015). Caregiver-mediated exercises for improving outcomes after stroke. Cochrane Library (issue 4, No CD0110058).
- [30] Lohse, K., Lang, C., & Boyd, L. (2014). Is more better? Using meta data to explore doese-response relationships in stroke rehabilitation. Stroke (44 (7): 2053-8).
- [31] Veerbeek JM, Wegen E Van, Peppen R Van, et al. (2014). What Is the Evidence for Physical Therapy Poststroke ? A Systematic Review and Meta-Analysis. 2014; 9 (2). doi: 10.1371/journal.pone.0087987.

Example self training

gender	male
age	36
family status	married
localisation	MCA CVA
years after onset	3
main problems	Neuromuscular, sensory, biomechanic
personal goal	playing 9 holes of golf using a cart in 3 month

Target components for reaching his goals:

Core stability, rotation in body and space, eyes- arms - body coordination, elongation of back and hip muscles, balance in standing and walking, reaching in standing, strengthening leg muscles, movements of the feet

1 Ryoutaro Sugi(A Japanese actor) Exercise (side-sitting on the floor with rotation)

Timing : In the evening at home Frequency : 7 times each to left and right Duration : $7 \sim 8$ minutes.

Components: Core stability, rotation in body and space, eyes- arms - body coordination, elongation back and hip muscles

More information excercise 1

Move the eyes first, then face, ribs, pelvis. Don't hold the breath and let the hips sink to the floor slowly.

2 Mobilise your back muscles

а	Move your head back and forward while supporting the head in the all
	fours position.
b	Move the head in a circle while supporting the head in the all fours
	position.
с	

Timing : Every day when you have time Frequency : 10 times each (back and forward) (clockwise and counter clockwise) Duration : 3~4 minuets.

Components: elongation back and hip muscles

a : Move back and forward, left and right while supporting the head in all fours position.

b: Move the head in a circle

More information exercise 2

3 Squat and rotate

а	Sit on a ball and move left and right with arms supported on a table
b	Rotate your head opposite to the movement of your hips of "a"
С	Do it without arms supported on table

Components: Core, Balance, elongation back and hip muscles, mobile feet

More information excercise 3

a: Sit on a ball and move left and right with arms supported on a table

b: Rotate your head opposite to the movement of your hips of "a"

C: Do it without arms supported on table

4 You can track the Line (when you play golf)

а	Place your hands on the floor and turn eyes first and then your face
b	Turn your eyes, face, ribs, and pelvis without hand support
С	Open your arms more widely

 If you can do it without loosing balance

 Image: Construction of the stable without hands

 Image: Construction of the stable while doing the turning exercise

Timing : Evening Frequency : a, b) 2~3 times left and right c) 10 times each left and right Duration : 6~7 minutes.

Components: Core stability, rotation in body and space, eyes- arms - body coordination, elongation back and hip muscles, balance while weight bearing, reaching while weight bearing, strengthening leg muscles, movements of the feet more information exercise 4

a) Place your hands, and turn eyes first and then your face

b) Turn your eyes, face, ribs, and pelvis without hand support

c) Open your arms more widely

5 Let's Dance

а	Make Cross steps by putting your left foot in front for 10 steps, and then come back and make 10 steps with your right foot
b	Make Cross steps by putting your left foot behind for 10 steps, and then come back and make 10 steps with your right foot behind
C	Make Cross steps by putting your left foot in front and behind alternately for 10 steps, and then come back and make 10 steps with your right _o

Timing: $2\sim 3$ times/Week in the corridor of your house when you go out to dispose of the trash. Frequency: 10 steps 3 rounds

Components:Core stability, rotation in body and space, eyesarms - body coordination, balance in standing, strengthening leg muscles, feet-movements

More information exercise 5

а

Make Cross steps by putting your left foot in front for 10 steps, and then come back and make 10 steps behind with your right foot

b

Make Cross steps by putting your left foot behind for 10 steps, and then come back, and make 10 steps with your right foot behind

С

Make Cross steps with your left foot in front and behind alternately for 10 steps, and then come back 10 steps with your right

Find your balance and do this movement slowly

6 Variations in locomotion

а	Walking inside, turning the head to the right and left along a balance line
b	Walking inside, turning the head right and left without a balance line
С	Walking outside, turning the head right and left with a balance line

Components: Core stability, rotation in body and space, eyes-arms-body coordination,

balance in standing and walking, movements of the feet

More information exercise 6

a) Inside with a balance line on the floor

Walk straight with eyes on a target 45 degrees left and right when you are walking on a balance line

More information exercise 6

b) Walk inside without a balance line

c) Walk outside with (later without) a balance line

If you can deal with it on a stable surface, try slopes or uneven ground as well.

Even if you don't have a time to do the home programs. . .

Practice in your daily life

How to sit on a chair

Do not lean on the back of a chair in your daily life

At your desk

Meal time at home

Sone help for your sitting posture

Resting position after your meals

Notes for steps

It was a short while, but we had a good time. Thank you.

We hope you can play your favorite - golf.

Example 2 Self training programm (short version)

gender	female
age	26
family status	single
localisation	MCA CVA left
years after onset	2
main problems	Neuromuscular-sensory
Personal goal	Walking hand in hand with boyfriend without aids

Target components: Core stability, Postural control for standing / one leg standing , postural control for standing and reaching, eyes-body-space coordination, free range of right arm, free range of both feet

1. Place your right hand ! !

Round your back with both hands placed on your knees.

a)Look up to the ceiling with your hands on knees.

Take care not to let the hands leave the knee⁻

b) Look left and right slowly

c) Reach to the left and upward with your eyes on your left hand

2. Table Exercise

B)

POINTS!!: Extend your elbow and open right hand !

Place your both hands together and turn your neck left and right. Do not raise your left shoulder up!

Place your hands in front of each shoulder and turn your neck left and right. Do not raise your left shoulder up!

Put both hands wide and turn your neck left and right. Do not raise your left shoulder up!

Resting position

3. Strengthening right leg

Preparation : Stand by a corner

a)
①Turn your body left
②Put your left toe out

b)
①Turn your body left
②Step your left leg forward

Turn your body left at first and then move your left leg. Take care not to bend your right arm. Feel your right foot standing.

c) ①Turn your body left ②Step your left leg up on a chair

4. A date - hand in hand

How to hold a hand

1) Hold right hand and check the softness of the hand 2) Then hand over to left hand and turn her wrist a little up

3) Hold hands with his arm placed behind her elbow.

a) Swing arms back and forward together

b)

Walk hand in hand. Check your right foot is standing step by step. Walk slowly.

c)Walk in normal speed.

Take care your right arm and fingers are not flexed

A) Place hands on a board

B) Wight transfer left and right

Place your hand on a board

Ask for some help at first.

C) Bring your hips up

6.

Place your hands on a surface - with some help at

first

Keep your hands stable

- a) Look up and down
- b) Step your left foot forward and back
- c) Step your left foot back under the bed, then forward

c)

7. Rabbit and hip up!

a)

Keep your rabbit on your hand

a) A rolled towel supports your hip - Lift your bottom up

b)

- b) Do the same without the rolled towel
- c) Look to the left while lifting your bottom

C)

If you can open your fingers without rabbit

8. Kick!

Put some weight on your hand and open fingers. In the future, your hand will be loose without weights.

Kick toward your boyfriend with sole of your foot.

9. Rotation

Bring your right leg to the left with your right hand keeping straight. Support your right leg with your left hand. Extend your whole body. Keep your face left.

⇒It will be your resting position too Keep breathing

10. Don't fall !

Side lying with your right arm extended. Place your left arm on the bed lightly.

a) Raise your leg straight up

Be careful with wobbly lower back.

b)

Raise your left leg up, and then bring it forward with bending your knee.

Be careful with wobbly lower back.

c)

Raise your left leg up while holding left arm in the air. Bring left leg forward bending the left knee.
* Keep your body stable not falling forward or backward and control the range of movement of the left leg.

11. Alligator posing

a) Place your arm under your shoulder. Breath 10 times

B)Look up and down and repeat it.

c) Look left and right

12. The star pose

- Place your hand flatOpen your chest wide
- •Look to your left fingers

13. Elbow extension

Put your right leg standing and put a towel under your right hip.Keep your right knee standing while doing this exercise.Put another towel under your right shoulder too.

Don't extend your elbow with your back muscle. If you are using your power to pull the shoulder down, that means it is WRONG movement.

Exercise

Flex and extend your elbow from your arm straight up in the air. ①Extend your elbow from 90 degrees of flexion ②Flex your elbow down to 90 degrees

a) Do it with your therapistb) Do it with your familyc) Do it alone without support.

14.

Exercise

①Raise your right arm up in prone position
②Bring your arm down from up-raised position

- a) Do it with your therapist's supportb) Do it with your family's supportc) Do it along without support
- c) Do it alone without support

15. Resting in prone

Rest with your both arms up in prone position. Then, Relax

Example 3

Self Training

gender	male
age	62
family status	married
localisation	MCA CVA right
years after onset	6
main problems	neuromuscular/ sensory/perceptual problems
personal goal	Walk outside with a stick

Target components: awareness of his body; understanding of his problems; attention to the task; core stability; egocentric & allocentric perception; postural control for transfers (lying supine to standing), balance in sitting and standing, mobility of the whole body

1:Let go of right knee

*Do it slowly by yourself !

1 a)

Start from the range you can move your right leg easily.

Keep breathing.

Be aware not to move your left arm and pelvis.

Start from the range you can move your right leg easily. Keep breathing.

Turn your head to the opposite side with eyes.

XYou need a free neck to look around while you are walking.

1 c)

Start from the range you can move your right leg easily.

Keep breathing.

Turn your head to the opposite

side, but keep your eyes to your

turning knee.

2 Let go of left knee

2 a)

Start from the range you can move your left leg easily.

Keep breathing.

Be aware not to move your right arm and pelvis.

2b)

Start from the range you can move your left leg easily.

Keep breathing.

Turn your head to the opposite side with eyes.

Start from the range you can move your left leg easily.

Keep breathing.

Turn your head to the opposite side, but keep your eyes to your turning knee.

3 Keep your left leg standing ♪

3 a)

Keep your face in midline. Don't extend your neck and push into the pillow. Keep breathing.

3 b)

Don't extend your neck. Roll your head to the right on the pillow. Roll your right knee to the right. Keep the left knee standing.

Keep breathing.

3 c)

Don't extend your neck. Roll your head to the left on the pillow. Roll your right knee to the right. Keep the left knee standing.

4 Hug yourself I

4 a)

Keep your face in midline. Don't extend your neck and push into the pillow. Make your left side longer.

4 b)

Keep your face in midline. Move your head and leg together in opposite directions. If it is effortful, ask help from your wife to support leg and head

4 c)

Keep your face in midline. Move your eyes, head and leg together in opposite directions. If it is effortful, ask help from your wife to support leg and head.

5 Hug your self II

5 a)
Keep your face in midline.
Don't extend your neck and
push into the pillow.
Make your right side longer.

5b)

Keep your face in midline. Move your head and leg together in opposite directions. If it is effortful, ask help from your wife to support leg and head

5 c)

Keep your face in midline. Move your eyes, head and leg together in opposite directions. If it is effortful, ask for help from your wife to support leg and head.

6 Rolling over

6 a)

Ask your wife to keep your left hand on your knees.

Take both knees to the right.

Don't extend your back too much.

Make the same movement to the other side.

Ask your wife to keep your left hand on your knees. Keep breathing. Don't extend your back too much.

Make the same movement to the other side.

Keep the left foot standing and let go of the right leg to the outside.

6 c)

Start to move your left leg away within your comfortable range of movement.

Keep breathing.

Ask your wife to keep your hands on your knees.

Don't extend your back too much.

Keep the right foot standing and let go of the

left leg to the outside.

7 My left foot ! !

Do it slowly by yourself !

7 a)

Reach to the left knee without extending neck and watch left leg. Don't lean to the right side. Relax the right hand and do not extend the elbow.

Be aware not to bend the left elbow

7b)

Have your right foot in front of the left foot.

Don't extend your neck.

Be aware not to make your right thigh

stiff.

Relax your right elbow and bend a little.

8 Don't forget your left ! !

When you work at home or at your working place, place your left arm on a table. It is important to have your left arm into your vision. Set an alarm clock every 20 minutes, and check your left arm if

8 a)

Sit diagonally for setting your left arm on a table while your work. Take care not to allow your left arm to fall down. You might need 2 towels under your elbow.

8b)

1 towel under your elbow.

Reduce the number of towels.

8 c)

No towel under elbow

9 Wipe your table after meal

9 a)

Wipe table with your left hand on the table slowly. Wipe your right and front at first. Take care not to let your left hand fall when you come up to standing.

9b)

Try to wipe more on your left side.

Take care not to let your left hand fall.

1 O Relaxation of your neck

Place a towel or pillow and let your head move forward. Place your left arm on a table. Don't push with your right leg and back.

1 1 Stand and look left and right

11a)

Don't fix your neck or lean to the right side. Move your pelvis and turn your head to the left and then to the right. Feel the left leg standing and getting longer.

Move your pelvis to the right and turn your head to the left. Then the pelvis to the left and turn the head to the right. %Please do this exercise with your wife. Don't pull on each other and synchronize the timing

11b)

1 2 First step to the future

%Do this with your therapist

Find where your left leg stands.

If you can feel your leg standing, step your right foot forward.

Only light touch on your right hand.

Don't tilt your head back.